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We propose a new procedure for designing by rote finite difference schemes that
inherit energy conservation or dissipation property from nonlinear partial differential
equations, such as the Korteweg—de Vries (KdV) equation and the Cahn-Hilliard
equation. The most important feature of our procedure is a rigorous discretization
of variational derivatives using summation by parts, which implies that the inherited
properties are satisfied exactly. Since the inherited properties are kept even if the time
mesh size changes in the time-evolution process, we can use some appropriate time
mesh adaptive methods to obtain numerical solutions through the derived schemes.
Because of these properties the derived schemes are expected to be numerically stable
and yield solutions converging to PDE solutions and sufficiently flexible to treat.
The inheritance of the energy conservation and dissipation properties are verified
numerically for the KdV equation and the Cahn—Hilliard equatia1999 Academic Press

Key Wordsfinite difference method; energy conservation; energy dissipation; mass
conservation; Korteweg—de Vries equation; Cahn—Hilliard equation.

1. INTRODUCTION

We consider finite difference schemes that inherit energy conservation or dissipal
property from nonlinear partial differential equations.

The study of schemes with conservation property was initiated by Coataait [5].
This so-called “energy method” attracted widespread attention in 1950s, as docume
by Richtmyer and Morton [28, Section 6]. This method was primarily studied to prove t
stability, existence, and uniqueness of solutions of schemes. The main emphasis we
stability rather than conservation property.

1 This work is partially supported by Grant-in-Aid of the Ministry of Education, Science, Sports and Culture
Japan and by “Research for the Future Program” of Japan Society for the Promotion of Science.
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Since 1970s the main interest has shifted from stability to the conservation prope
itself. Studies placing greater emphasis on the conservation property include those
Strauss and Vazquez [31], Greenspan [19], Li and Vu-Quoc [24], French [10, 11], |
[9], Nicolaides [26], McLachlan [25], and Hyman [22]. For energy conservation, Strau
and Vazquez [31] discussed schemes for the linear Klein—Gordon equation, Greenspan
for the initial value problenk = f (x), and Li and Vu-Quoc [24] for the nonlinear Klein—
Gordon equation. Fla [9] showed schemes that inherit energy conservation property
mass conservation property from DNLS (derivative nonlinear&tinger) equation. French
[10, 11] proposed some generic FEM schemes that preserve the energy properties of nc
ear PDEs. A control volume method for overcoming the difficulty of discretizing the div-cu
system is proposed in Nicolaides [26]. McLachlan [25] presents an algebraic method for
construction of numerical schemes that inherit some symmetries of solutions of ODE.
“mimetic method” shown in Hyman [22] mimics the fundamental properties of a syste
using discrete operators that consist of discretized laws of vector and tensor calculus.
famous “symplectic method” [30], applicable to Hamilton systems, may be regarded as
application based on this formulation. In their recent paper [24], Li and Vu-Quoc, descr
this shift in emphasis, noting that “in some areas, the ability to preserve some invari
properties of the original differential equation is a criterion to judge the success of a nurr
ical simulation.” This shift and recent works may be considered “geometric integratio
studies [2].

Still this formulation has been restricted to (the case of) conservative systems, trea
only invariants as the characteristic properties to inherit. Since the dissipation laws ar
essential as the conservation laws for some problems such as the spinodal decompo
problem [3] we must treat the dissipation laws as another fundamental property to inhe
Through considering this spinodal decomposition problem we succeeded in proposir
new finite difference scheme that inherits the energy dissipation property from the Cal
Hilliard equation in [16]. Du and Nicolaides [6] also proposed interesting FEM and FDI
schemes that inherit the energy dissipation property for the equation under Dirichlet bot
ary conditions. These results also exploit possibility of unification of the conservation la
and the dissipation laws as the characteristic properties to inherit.

In this paper, defining some discrete mathematical notions in a rigorous manner
show a unified formulation for designing by rote finite difference schemes that inherit t
conservation property or the dissipation property. The family of equations that we consi
in this paper is

ou 3 \*s8G
— == —, a=0,123,..., (1)
ot aX Su

whereG = G(u, uy) is a function of bothu anduy = g—i and% is a variational derivative

of function G(u, uy) for u. Boundary conditions, properties of this family, the definition
of G, etc., are described in Section 2. Whets odd, the property of the equations to be
inherited by the schemes %fG dx = 0 and is called the “energy conservation property”
in this paper. When is even, it is(—l)“/2+1§—th dx<0and called the “energy dissipation
property.” Under certain conditions the “mass conservation propt—;%tj]ﬂ(x, t)ydx=0,is
inherited in addition. Now the gquestion is whether we can design a finite difference sche
that inherits the above properties for Eq. (1). We answer this question in the affirmat
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by making discrete replicas of the cause-and-effect relationship between Eq. (1) and
above properties in the context of exact finite difference calculus such as the summat
by-parts, which corresponds to the integral-by-parts. This idea is quite natural but th
has been no study that states a concrete and general-purpose method without vague
In order to eliminate vagueness we define some discrete mathematical notions strictly.
most essential notion is a discrete variational derivative under finite summation. Hirota [
mentioned a similar notion, the discrete Euler derivative, obtained heuristically for so
special examples. The basic idea of this formulation has been reported in [14, 15] with
precise mathematical discussion. Concerning the derived schemes themselves, we ce
appropriate time mesh adaptive methods because the discrete replicas of the cause
effect relationship are local with respect to time step. Because of this property we
expect that the derived schemes are sulfficiently flexible to treat, in addition to being ste
and convergent.

The contents of this paper are as follows. In Section 2 we describe the “target” equati
and the characteristic properties precisely. The cause-and-effect relationship betwee
target equations and the inherited properties is shown in the continuous context. In Sect
definitions and properties of discrete operators are shown. In Section 4 we show the sche
designed to inherit the above properties. In Sections 4.2 and 4.3 we prove that der
schemes inherit the above properties. The proof is the form of the discrete cause-and-e
relationship between the target equations and the inherited properties in the conte»
finite difference calculus. In Section 5 we show schemes and numerical solutions for s
example equations, the Korteweg—de Vries equation, a linear diffusion equation, and
Cahn—Hilliard equation. We show that the derived schemes have some good features
conclude with a summary of the results in this paper.

2. EQUATIONS AND PROPERTIES

The purpose of this section is to describe equations and their characteristic proper
which we consider. The relationship between an equation and its properties, describe
this section, is fundamental to this paper.

Fora = 0,1, 2, 3,...we consider the following equation in functioix, t),

du [ 9\*5G
=) 5o @
X su

wherex € 2 =]0, L], L < o0, is the one-dimensional space variable aigithe time vari-
able. FunctionG = G(u, uy) is called the “energy function” in this paper since it often

corresponds to a local free energy function in physical applicati%hsis a variational

derivative of the functiorG for u and is calculated a8 = 26 — %(%).

We consider a class of boundary conditions that satisfy the following two assumptio
The first assumption is

9G au]"

E

auy 3t |,
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which is satisfied, e.g., by the Dirichlet b.c. or the natural b.c. or the periodical b.c. T
second one is

/2 qL
S DTRCPEED ) =00 aiseven
=1 4 x=0
(@=1)/2 1t
Z (— 1)| Ip-HE@-h 4 = ( 1)@= D/2E(@=1)/2 p(@=1)/2) =0 a is odd
1=1 4 x=0
4)
whereF® def( 1)14S and summations in (4) are defined as 0 when the upper limit of tt

running index is Iess than the lower limit. This convention applies to all summations in ti
paper.

For the solutioru(x, t) of (2) under boundary conditions that satisfy two assumption
(3) and (4), time dependency of the integral of the energy function is indicated as

d L
a/o G(u, uy) dx

L 5G au 3G ault
77dx _

/ 8G *8G
= —dx
0 8X su

L (/9 \?56)°
/2 9 oL
LHS(4) + 8(a)(—1) /O {<8x) 5u} dx

_ (—1)*/2. (Nonnegative  (Dissipative : o is even (5)
0 (Conservative: « is odd
where
def a is even
Se) = {O o is odd ©

We call this the “energy dissipation property” wheis even and the “energy conservation
property” whenw is odd. Note that Eqg. (5) is the most fundamental continuous equati
in this paper since it describes the cause-and-effect relationship between equations
properties. If the condition

()

is satisfied in addition to conditions (3) and (4), the time dependency of integugx of)
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d [t L L7 9\*8G
—/ u(x,t)dx:/ —udx=/ — ] —dx
dt Jo o ot o \ax/ du

JyCdx=0: =0

— 8)
aya—1 L . (

[((;ix) %}Xz():o. a > 0.
We call this property the “mass conservation property.” We call Eqg. (2) “the dissipati
problem” wherex is even and (3) and (4) (and (7)) are satisfied. We call Eq. (2) “th
conservation problem” whekeis odd and (3) and (4) (and (7)) are satisfied.

For example, the linear convection equation

au  au
" 9
at aX ©
and the Korteweg—de Vries equation
au (1, 94U
—=— U+ — 10
ot 9x <2 + 8x2> (10)
are conservation problems. A linear diffusion equation
au  9%u
=7 11
ot ax2’ (11)
the prominence temperature equation [1, pp. 7, 8]
ad 82 (u’/?
ou _ o) (12)
ot ax2
and the Cahn—Hilliard equation [3]
u 92 s 9%
Ezﬁ(pu+ru +qﬁ), p<0,9g<0,r >0, (13)

are dissipation problems.

As described in the Introduction, our main interest in this paper is to discretize t
derivation process (5) of the dissipation/conservation property. For this, all operations
calculus, i.e., differential, integral, integral by parts, and variational derivative, in Eq. (
must be discretized consistently. We choose one consistent “set” of discrete operators
fully for this purpose and describe these operators in Section 3.

3. DISCRETE SYMBOLS

In this section we introduce a consistent set of discrete operators.

3.1. Symbol Definitions
We suppose thatthe space mesh size is uniform. We define shift opegatsys sél) e

S = 1, (14)
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f
s:fkd_e fiera. (15)
Sk_ fi : fr1, (16)
+ —

We definesy, 8¢ and thenth difference operatos” , which is a discretization of theth
differential operator, as

5 €', (18)
5 %t SJA; L (19)
5 1 ngK_ , (20)
5o def szgxs; 1)
o2 1 S~ 28 _Aij S (22)
52m ) def (v 52 m> 1, (23)

sfem+2) dEfS 8

K m=>1 (24)

)

We adopt these difference operators for the following reasons:

e operators should be “symmetric” (i.e., they should not vary whan— — AXx);

o the number of reference points of theh difference operator should Imet+ 1 (this
number is minimum to approximate the differential operator);

o the discrepancy between difference operator and differential operator should
minimum under the above conditions.

We also define averaging operatgss, u;, i, ui?, ..., as
o defy (25)
def 1+ .
up LR (26)
_defl+5§
i % ZSK , @7)
2 2

As a discretization of the integral we adopt the summalidh which is defined by

N N-1 1
”fod_Ef< fo+ka+fN>Ax (29)

k=0

for the same reasons as above.
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3.2. Discrete Calculus

Some relationships between difference operators and summations are described ir
subsection.

First, we describe the inverse relationship between difference operators and summ:
operators foranj > 0, h € N,

N
ZH 5 fax = [ ™5 g ] LV:O (30)
s Z” fiax = pl™sM Y (31)
where
def
[fdilo = fn — fo. (32)
o (h) olefh mod 2— 0: his even (33)
o 1: his odd

The following relationship is “summation by parts,” which corresponds to integration |
parts:

fi(ss i N
Z” 600 Ax + 376 fk)gkAx—[ (SOITE MG (g
k=0

2 k=0
Repeated apphcatlon of the summation by parts yields

N
Z " fkaéh) kaX
k=0

(D23 AR Ax
I—1>|f<h7|)+ 5+|f(|—2) +ﬁ(h—|) + 57'f(|72) *ﬁ<h*'>
l:ZlFI;he/nz( 1) k (k K )(%4k ) (k K )(SK . )
N
B0 VEND 4 (B0 ?) (o FI) 4 (scBL?) (s :
+ > 1sizh2—— (s A?) (A ) + (scFi?) (A ") his even
I: odd o
) ) (R 20-2) (501" 35)
sHEN-2) (51D 4 (5o g0-2) (5o gh-1-D (
|:Zl<|<(h l)/Z( l)(k k )(k k )z(k K )(k K )
even
BO-D (g ph-0) 4 (g gi-1) gh-h
+Zl<l<<h D72 At (s )2<SK )
N
+ %(_l)(h—l)/ZF"l(((h—l)/Z,h) : his odd
k=0
whereh € N*,
2 () def oq
A (36)
=) (o) ) .
<1 def ) Tk (s77F) | is even
P = (52 E0) "+ (5 EL)° _ (37)
s x X~ lisodd

forl,1” € N. The derivation of (35) is shown in the Appendix.
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3.3. Discrete Variational Derivative

In this subsection we describe the definition and properties of the discrete variatic
derivative, which is derived from the definitions in Section 3.1 using relations in Section 3

First we assume that a “discrete energy functi@y(U) = (Gy(U)k)kez WhereU =
(Ukez, Which is given as an approximation @(u, uy), takes the form

GaUk = Y fiUog G U0g Vo,  kez, (38)
=1

wherem € N* and f;, g/, g : R — R are differentiable functionsJy is intended to be an
approximation tau(kAx). For suchGq4 we define the discrete variational derivative

8Gyg _(( 8Gy ))
sU,V)  \\8U. V) /)7

5Gq d_efEm: dfi o' (UG G Un) + gF (B Vg (8 Vi)
sU, V) d(Uxk, Vi) 2

of G4 for (U, V) as

k I=1

— 8 W (U, V)i —3|ZVV|+(U,V)k> ; (39)

whereU = (Uy), .z, V = (Vi),z, and

fiU + fitVi) Y (90 BV + g (8 Vi) dg*
+ —
W V= < 2 )( 2 > a6 U oV O
_ L (RU A+ (VO (g (6 Uk +g|+(6k+vk)> dg-
WU Vo= < 2 )( 2 d(8, U, 8 Vi) (“41)
df  gef MO0 a#b 42)
dab) ~ . a=b.

We note that this definition is well defined.
The above definition of the discrete variational derivative parallels the definiti@ﬁ.of
First recall that whem = v the variational derivative satisfies (by definition)

3G G
J[u] — J[v] E/Qa(u—v)dx%— [au(u—v)] , (43)
X aQ

where
J[u] & / G(u)dx. (44)
Q

Consider a discrete functiondl[U] defined as

N
J[U] =" Gg(U)kAX. (45)
k=0
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By the summation-by-parts (34) applied to the differedgé)] — Jy[ V] we obtain

N u dfi g (UG (B Un) + gt (8 Viogr (8 Vi)
J[UT] — [ V] = "
i[U] — J[V] kZa {Z(d(uk’vk) >

—5WT (U, V)i — e W (U, V)k)}(uk — Vi AX

Z(W*(u V)isd (Ui — Vi) + W (U, V)iesg (Ui — Vi)
I 1

N
+ (SEW (U, V)i + sc WU, V)0 (U — Vi)

k=0
N N
<=, 4Gy ~ d
_g 8(U,V)k(Uk Vi) AX + [aau (u, V)kL_O, (46)
where
98y, vy deleM*(u Vis! (U = Vi) + Wi (U, Vs (U — Vi)
38U -
+ (SEW (U, V)i + 5c W (U, V)i (Uk — V). (47)
This yields
N
Ji[U] = J[V] = kZB 5(u V) — Vi) AX (48)
if
3Gy N
{aau (U, V)k} = 0.

Equation (46) may be regarded as a discrete analogue of (43).

Remark. In the more general case wheBeinvolvesuyy, Uxxx, €tc., the discrete vari-
ational derivative ofG can be treated in a similar manner, as will be reported soon els
where.

4. DESIGN OF SCHEMES

In this section we show the finite difference scheme that we propti@emeans the ap-
proximation ofu(kAx, nAt) in this section. Figure 1 shows the proposed design procedu
for obtaining finite difference schemes.

Recall our assumption on the discretization of the energy fun@itimat G4 must be in
the form (38). This is because we use the discrete variational derivatsg. of
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Discrete Calculus

r---Continuous Calculus ---- . S
E “energy function” ! /| discrete “energy function” |:
. approx, I
| Glu, us) o Ga(U™) |
' l calculation I l calculation |
E variational derivative E E discrete variational derivative 5
5 3G o 5Ga ;
X Su : : S(Un+1) 7)) '
E { substitution E E l substitution ;
E ' 1| Finite Difference Scheme .
: PDE I I (ns1) " '
' \ +1 1
| o . approx) " - U," |
: ou (0} G o At :
; ot oz ) ou ! ! sl 0Gy !
: : : kOS(UR) Uy, |

— derivation path in this paper
— customary derivation path

FIG. 1. Design flowchart of the finite difference scheme.

4.1. The Finite Difference Method

For the equation

u [ 0\"sG
at — \ax/ éu
in (2) with« € N, we propose the finite difference scheme

3Gy

(n+1) (n)
Uk _Uk _ ol
Tk +1

8(U<“ ),U(n))k

, O0<k<N,keZ, neN,
At

(49)

with discrete boundary conditions. We note that the proposed scheme (49) invol

o o d f
(Ulﬁn-'»l))kN:";a;";ﬁﬂ and(UIEn))kNjfaj;ﬂﬂ Where(ak)zzml :e {aml, am1+l, am1+2» LR amz}a
a 5| (50)
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and

o : g' =const.andy” = const. for 1< ¥l <m
B = B(Gy) 2"/ 1: notin above case amgl = const. org™ = const. for 1< ¥l <m
2. otherwise
(51)

The discrete boundary conditions may be arbitrary under the following two constrain

The first constraint. (U™ )2, and (U™ )R 1# must be described explicitly
with (Ulf”)),'(“:f‘a”ﬁ and (U"™)N_, through the discrete boundary conditions. This als
implies that(Uko))|'(\'_JQ°‘MJ[’3)8 are given. This constraint is necessary to make the propos
scheme (49) consistent.

The second constraint.This corresponds to (3), (4) in the continuous context. The firs
condition, which corresponds to (3), is

3Gy N
53U —— (U U™ | =0 (52)
k=0

The second one, which corresponds to (4), is

ST e A R U il
4

1<l<a/2
I: even
N
=(1-1) = (a—| = (-2 = (a—| — (-2 — E{a—l
Ly PR (SRR + (s 6 F)
1<l<a/2 4
|: odd k=0
=0: o IS even
= (-2 = (a—|—1 —£(1-2 — Ela—1-1
S - GEFC)EFET ) + (P )R Y) (53)
1<l<(@—1)/2 2
I: even
= (-1 1) & (oI 1 &(1-1)\ & (a—I
N F|<< >(Si)Fl<< >)+(Si>':l<< >)FI<< )
1<l<(e—1)/2 2
|: odd
N
+ ( pe-bREEDZaO 0 s odd
k=0
where
= (1) def () §Gy
i = 8 s(UEHH UMY’ (54)
et FO (s ED) - | is even
FOVE 2 (55)
(scF )’ ( ) | is odd
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When the original boundary conditions satisfy (7), the discrete boundary condition sho
also satisfy

N
” 8Gd _q- _

k=0

N (56)
sG

Q@) gl d —0:

S(UTD U ® o> 0.
(UMD, U™),

k=0
4.2. Properties of the Scheme for the Conservation Problem

In this subsection we describe properties of the derived scheme for the conserva
problem (2) with oddk.

THEOREM 4.1 (Energy Conservation Let Um) be computed througt9), (52), and
(53) for odda. Then the total energy;, ", Ga(U (m)kAx is independent of time step n.

1
At

Proof.

" G (n+l) Z " Gd (n) X}

1
, 8Gy U — Ax
— k) U(n+1> U(n)) t

x~
z ||Mz
o

— A
N ” 8Gd (@) SGd
= Z Ut ym Ok Ut ym Ax
k=0 8( ’ ) k 8( ’ ) k
= LHS(53)
— o0 (57)

The first equality is derived from (48) and (52), the second is from the scheme (49),
third is from (35), and the last is from (53).m

THEOREM4.2(Mass Conservation Let U™ be computed througt#9), (52), and(53)
for odda. If the optional conditiori56) is satisfied by \J”, then the total mass U, Ax
is independent of time step n.

Proof.
1 N N N Gd
" (n+1) 7y (n) 7 oofa)
E{kz_(:) Uy Ax—kz_; U, Ax} Z BN 50, Um), AX
N
_ (a 1) 3Gy
3 s(UO Uy,
k=0
= 0. (58)

The first equality is derived from the scheme (49), the second is from (30), and the las
from the optional condition (56). m
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Remark. Looking atthese proofs, we find that we can change the time meshsizith
respect to time step as At,, still preserving the above theorems. This means that we c:
use some appropriate time mesh adaptive methods to obtain numerical solutions throug
proposed scheme (49). For some severe problems, this property may be essentially he
This state is also valid for the dissipative problem in the following subsection.

4.3. Properties of the Scheme for the Dissipative Problem

Inthis subsection we describe properties of the derived scheme for the dissipative prokt
(2) with evena.

THEOREM4.3(Energy Dissipation Let Ukn> be computed througi9), (52), and(53)
for evena. Then the(sign-modified total energy(—1)%/2+15"/ N Ga(U ™) Ax decreases
as the time step n increases.

1
At

Proof.

N
/G (U(n+1) Z//Gd U(n) X}

N
k=0 k=0
_ XN: y 3Gy (Uénﬂ) - Uéﬂ)) AX
— s(UML yYm), At
N
Z// 8Gyq (@) 8Gyq

3(U<n+1),u<n>)k'5k 5(UG+D, u<n>)kAX

=~
Il
o

N
LHS(53) + (—1)“/22 Fie/2 A
= (=1)%?. (Nonnegative, (59)
Wherelff(" is defined in (54). The first equality is derived from (48) and (52), the second

from the scheme (49), the third is from (35), and the last is from (58).

THEOREM 4.4 (Mass Conservation Let U™ be computed througk49), (52), and
(53) for evenc. If the optional condition(56) is satisfied by I,(J” , then the total mass
ZLNOU,E")AX is independent of time step n.

Proof.
{ N N N Gd
iy (n+1) 7y () 7 ola
— UM Ax — UkAx}=§ 8¢ —— 29 Ax
(n+1) (n)
k=0 k=0 8 U U )
7N
k=03(U (n_+1) U(‘mj a=0

N
(x—1) §G .
|:(S 5(u(n+1)iju(n)jki| k=0 . a>0
-0 (60)

The first equality is derived from the scheme (49), the second is from (30), and the la:
from the optional condition (56). m
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Remark. As described in the above remark, we can also change the time megktsize
with respect to time step asAt,, still preserving the above theorems.

5. APPLICATIONS

Some examples using the proposed method are shown in this section.

5.1. The Korteweg—de Vries Equation

We consider the Korteweg—de Vries equation as an example fot in (2). This is
a well-known nonlinear equation which has soliton solutions. Numerical solution of tt
equation is relatively difficult and studies through the finite difference method are [12, :
18, 20, 27, 29, 34]. It has been proven that some schemes are unconditionally stable;
for instance, [23] and [33]. The equation is

2
and the periodic condition
u(x +nL) = u(x), neZz, (62)
is imposed.
The KdV equation is an instance of (2) with= 1 and
G(u, uy) = éue' - % (g-i)z (63)

and the condition (62) satisfies (3) and (4). For this system the total energy is conser
ie.,

d L
—/ G(u,uy) dx =0. (64)
dt Jo

Since the periodic condition satisfies (7), the total mass is also conserved, i.e.,

d L
a/0 uix,t)dx=0. (65)

According to Section 4, we obtain the scheme for this equation. First, we discret
“energy function”G(u, uy) of (63) to

def 1 1 (87 U2 + (8 Uw)?
GaU & Z(Uy)® — - - kK (66)
6 2 2
Second, we obtain discrete variational derivativégfaccording to (38) as
(n+1)y2 N+, (M (M2 (n+1) Q)
§Gq Y A i A () 52 Ut +uk“. 67)

sUMD, UM) T2 3 K 2
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Third, we obtain a scheme for the equation as

1 1))2 1 2 1
Uém_ ) Uén) _ 5(1> } (UénJr )) + UIEM )Uén) + (Uén)) +5<2> Uén-&- ) + Uén)
At k2 3 k 2 '

(68)

This finite difference scheme is a new one for the KdV equation. Finally we obtain frc
(62) a discrete boundary condition as

which satisfies (52), (53), and (56).
ForU,E“) computed through (68) and (69), the energy conservation property is inheri
as

N N

D "Gy(UM) Ax = "G4(U?), Ax (70)

k=0 k=0
and the mass conservation property is inherited as

N N

>y ax =3 " uax. (71)

k=0 k=0

We compute some numerical solutions for the KdV equation using our scheme (68).
solve the implicit scheme (68) numerically we use the Newton method. Figure 2 is c
example of numerical solutions we obtained witlx = 1/20 andAt = 1/10000. With
these parameters almost all schemes that are conditionally stable are unstable, for exa
schemes in [17, 34]. Figure 3 shows the time dependency of energy of numerical solut

u(x,t)

50+ ‘ ‘ ‘l
40} l
30 |
o “M”“Im'l
N RN 4
T n..g-::g;!E:giﬂ!é'i!:}iw-'i‘%.,..A
0 DRV
AT “‘
ol i
i

2.0

40™5 ’ t

FIG.2. Numerical solutions using our scheme (68) with = 1/20, At = 1/10000,Q2 = [0, 40]. The initial
value isu(x, 0) = 48 sech(2(x — 36)) + 12 sech(x — 24), which is an approximation of the two-soliton solution.
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FIG.3. Thetime dependency of energy of numerical solutions in Fig. 2. Theoretically, the energy conserva
property is satisfied as (70).

in Fig. 2. As shown in the energy conservation property (70), the energy of numeri
solutionsZQ‘oGd(U My, Ax is independent of time theoretically. Figure 3 indicates tha
the energy of numerical solutions is conserved quite well and agrees with the conserve
property. Figure 4 shows the time dependency of mass of numerical solutions in Fig. 2.
mass of numerical solutiors};",U," Ax is also independent of time theoretically and it
is shown in the mass conservation property (71). In Fig. 4, the mass of numerical soluti
are conserved quite well and it agrees with the conservation property also.

The latter two figures indicate that the conservation properties are also valid numerice
and Fig. 2 suggests that our scheme is also unconditionally stable. Note that our prop

method generates a new scheme and we expect that it has the above advantageous proj

5.2. Linear Diffusion Equation

In this section we consider a linear diffusion equation as a simple example=£o2 in
(2). This equation is a typical and well-known equation which needs stabilization, e.g.,
Courant—Friedrichs—Lewy condition or the Crank—Nicolson scheme, to obtain numeri
solutions. The equation is

u 32U
= 72
ot ax? (72)
and the boundary condition
[utdy_o =0 (73)

is imposed.
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72.0000010

72.0000005 [

Mass

72.0000000

FIG. 4. The time dependency of mass of numerical solutions in Fig. 2. Theoretically, the mass conserva
property is satisfied as (71).

This means that this equation is one instance of (2) with 2 and

1
G(u, uy) = Euz, (74)

and the condition (73) satisfies (4). From (74) we obta®ydu, = 0 and this satisfies (3).
For this system the total energy decreases, i.e.,

L
g/ G(u,uy)dx <0. (75)
dt /o
If u(x, t) satisfies the optional condition (7), i.e.,
[uxl—o = 0. (76)

then the total mass is conserved, i.e.,

d L
a/O u(x,t)ydx =0. (77)

According to Section 4, we obtain the scheme for this equation. First, we discret
“energy function"G(u, uy) of (74) to

1
Ga(U), &' 5 Uo7 (78)
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Second, we obtain the discrete variational derivativ&ghaccording to (38) as

3Gy _ Uén+l) + Uén) 79
3(U(n+l>’ U(n)) . o 2 (79)
Third, we obtain a scheme for the equation as
(n+1) Q) (n+1) Q)
U WD e (U H VT (80)
At k 2

Finally we obtain discrete boundary conditions from (73) as

N
U (n+1) U (n) U (n+1) U (n)
[ (sﬁ” S e ) (= ) <o (81)

k=0

which equals (53). Feré”), which satisfies (80) and (81), the energy dissipation proper
is inherited as

N

N
D 7 Ga(UM) Ax <> " Ga(U™) Ax  for n=0,1,2..... (82
k=0 k=0

When the optional condition (76) is satisfied we discretize it as

N
—0, (83)

M+ | M
[ JNEl Uo7+ Uy
k
k=0

2

which equals (56). We obtain the mass conservation property under this condition as

N N
> ruMax =Y "yl Ax. (84)
k=0 k=0

Remark. The scheme (80) is identical with the Crank—Nicolson scheme [2
Section 8.2], which is unconditionally stable and is convergent with convergence r
O((AX)? + (A1)?).

5.3. The Cahn—Hilliard Equation

In this section we consider the Cahn—Hilliard equation [3] as an important example
a = 2 in (2). This is a notorious equation for difficulty of numerical computation. Ir
contrast to the abundant literature [6—8, 10] on FEM for the Cahn—Hilliard equation, th
are relatively few studies on FDM [4, 16, 32]. Some numerical schemes are known
preserve some properties for the Cahn—Hilliard equation.

We show that we have to apply a quite smatl for computing this equation if we use
a conventional scheme [13]. With the scheme designed in this section, in contrast, we
obtain numerical solutions for the equation with an arbitraty The equation is
d%u

3,425
(pu+ru +q8x2>’ (85)

du 02
at  oax2
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wherep < 0,q < 0, and O< r, and we suppose that the boundary conditions

a a

—u = — =0, (86)
X |y_o  OX |y__
d s 9% 3 s 9%
— r — = — r — =0, 87
™ (pu+ u +qax2) T <pu+ ut+az s - (87)
ie.,
0 d
—u = —u =0, (88)
X x=0 X x=L
33 33
—3U = —3U = 0, (89)
0X° o  OX% |,

are satisfied.
This equation is one instance of (2) with= 2 and

1 1 1 /au\?
G(u, uy) = épuzjL Zfru“ — 2q<ax> , (90)

and the condition (86) satisfies (3), while the condition (87) satisfies (4) and (7). For t

system the total energy decreases, i.e.,

L
E/ G(u,uy) dx <0, (92)
dt /o

and the total mass is conserved as

d L
a/o uix,t)dx=0. (92)

According to Section 4, we obtain the scheme for this equation. First, we discret
“energy function"G(u, uy) of (90) to
1
2

U2 + (8 U2

> (93)

1 1
Ga(U), &' SPUO?+ 51 (U0* - =g

Second, we obtain the discrete variational derivativ&gaccording to (38) as

5Gq UMt + "

s um), T P2

(U (U0 + U )+ (U
4

+r

U|£n+l) + Uén)

- ©4)

+ g8
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Third, we obtain a scheme for the equation

Uén+1) _ Ulﬁn) _ 6(2) pUIErH_l) +U|£n)
At K 2

(n+1)\3 M+ 2 () (+1) (1 (M2 ()3
U+ () U + 0 (UM) + ()
4

U(n+l) +U(ﬂ)
Fap? Do FPe L (95)

+r

Finally we obtain discrete boundary conditions from (88) and (89) as
— s{Oym
k=0 - (Sk Uk

_ s@Bym
k=0 k k

5U" =0 (96)
k “~k

k=N

5" =0. (97)

k=N

These conditions satisfy (52), (53), and (56).
For Ué”) computed through (94), (96), and (97), the energy dissipation property is inhi
ited as

N N
> 7 Ga(UMP) Ax <> " Gg(U™), Ax (98)
k=0 k=0
and the mass conservation property as
N N
druMax =Y "yl Ax. (99)
k=0 k=0

It is proved in [16] that the scheme (94) has the following properties:

e there is a unique solutiod""" for givenU.";
e the scheme is unconditionally stable;
e the scheme is convergent where the convergence r&(isx)? + (At)?).

We computed some numerical solution for the Cahn—Hilliard equation using our sche
(94). To solve the implicit scheme (94) numerically we use the Newton method. Figure !
one example of numerical solutions we obtained. Figure 6 shows the time dependenc
energy of numerical solutions in Fig. 5. As shown in the energy dissipation property (98),
energy of numerical solutions.,_,G4(U ™) Ax theoretically decreases as time passes
Figure 6 indicates that the energy of numerical solutions decreases and agrees wit!
dissipation property. Figure 7 shows the time dependency of mass of numerical soluti
in Fig. 5. The mass of numerical solutiohs;,U" Ax is theoretically independent of
time and this is shown in the mass conservation property (99). Looking at Fig. 7, the m
of numerical solutions is conserved quite well and it agrees with the conservation propt

also.
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t=0 ——
0.004278 -~ ]
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0.08333 -
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1.000 ——
1.167 -
1.333 -
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u(x,t)
=}

-t

X

FIG. 5. Numerical solutions using our scheme (94) wifx = 1/50, At =1/1200,2 =0, 1], p=-1.0,
q=-0.001, andr =1.0. The initial value isu(x,0)=0.1sin(2rx)+ 0.01cog4xX)+ 0.06 siN4rx) +
0.02 cog107Xx) .

-0.06 ]

Energy

-0.08 ]

012 | 1

014 | 1

t

FIG.6. The time dependency of energy of numerical solutions in Fig. 5. Theoretically, the energy dissipat
property is satisfied as (98).
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FIG. 7. The time dependency of mass of numerical solutions in Fig. 5. Theoretically, the mass conserva
property is satisfied as (99).

The latter two figures indicate that the conservation properties are also valid numerice
and Fig. 5 suggests that our scheme is also unconditionally stable. These results agree
the dissipation/conservation properties and the stability proved in [16].

6. CONCLUSION

We have described a method for designing by rote finite difference schemes that int
properties (5) (and (8)) from PDEs in (2). The proposed method is easy, simple, and
plicable to many equations. The inherited properties are kept even if the time mesh
changes in the time-evolution process for the derived schemes. Some example sch
are derived through the proposed procedure and are shown to be superior to (compe
with) existing schemes in that they are consistent, stable, convergent, and flexible. -
means that we may strongly expect that we can generate superior schemes for other |
easily.

Since all discrete basic operators we use are symmetric with respect to time reversal
derived schemes must be implicit. This is by no means a drawback of the derived sche
Computation time is sufficiently small using the derived schemes with relatively lstrge
and we can take\t large because the derived scheme is expected to be numerically sta
In addition to this, we can use appropriate time mesh adaptive methods for the deri
schemes.

When the space dimension is more than one, discrete calculus is much more diffi
and complicated except when space axes are orthogonal to each other. A simple dis
calculus when the space dimension is two is exemplified in [16].
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APPENDIX: PROOF OF ITERATION OF SUMMATION BY PARTS

In this section we prove (35). For a matrix (or vecténin general its transpose is denoted

203

by A"
LEMMA A.1
where
_e O 8k
o, (0 %), )
def 1 /1
e= — . A.3
(1) (A3)
Proof. This relation is trivial. m
LEMMA A.2.
N T 1 T 1N
Z” {acDxay, + (Dxay) a }AX = > [a Ay + (Acdy) &), _o- (A.4)
k=0
where
def [ Sk Mk
A = , A.5
<9k $k> (A-5)
A-NRAN (A6)
O &k
0 +
Ay =f< i S‘). (A7)
s O
Proof. From (34) we obtain this equationm
LEMMA A.3.
Z”{akD aAax = (=" Z” D "ay) Ax
Z( 1)| l{ D| -1 T) (Ath |a1/()
N
+ (AkDLlaI)T(DL"a;)}] : (A.8)
k=0

whereEQdffl heN*, heN,andH <h.
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Proof. We obtain this equation from an iterative application of (A.4) to the LHS of thi

equation. m

From this lemma and Lemma A.1 we obtain

N N
Z” fk5i((h) f AX = (—1)h, Z " {eT(DL" fk)T(DE_h, fk)e}Ax
k=0 k=0

h

1 . _ .

3| S HE (OF ) (AL fe)
h’' N

+ 3 D' HE (ADHR) (DE e} | . (A9)
=1 k=0

whereh e NT, h" e N, andh’ < h.

Substitutingh’ = h/2 into this equation we obtain (35) for evenWhenh is odd, we

obtain (35) by comparing this equation whh= (h — 1)/2 andh’ = (h + 1)/2.
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